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In its original form the mild-slope equation, which approximates the motion of linear
water waves over undulating topography, is a simplified version of the more recently
derived modified mild-slope equation. However, the reduced equation does not deal
adequately with rapidly varying small-amplitude perturbations about an otherwise
slowly varying bedform and it does not produce free-surface profiles that inherit
slope discontinuities from the topography, an intrinsic feature of the approximation
on which both equations are based. The inconsistency between the two equations is
rectified by the derivation of an alternative form of the mild-slope equation, having
the simplicity of the standard form and yet containing all of the essential features
of the full equation. In the process, a more transparent version of the modified
mild-slope equation is identified. The standard and revised mild-slope equations are
compared analytically in the context of two-dimensional plane wave scattering and it
is found that they lead to values of the reflected wave amplitude that differ at lowest
order in the mild-slope parameter, for a general topography. It is also confirmed that
the revised mild-slope equation gives the dominant contribution in the solution of
the new form of the modified mild-slope equation. Indeed, the two equations differ
only by a term that is virtually negligible.

1. Introduction
The mild-slope equations simplify the linearized scattering of surface waves on

water of variable depth by approximating the vertical structure of the motion and
averaging over the depth. In its original form, the mild-slope equation was derived
independently by Berkhoff (1972, 1976) and Smith & Sprinks (1975), although it may
also be found in Jonsson & Brink-Kjaer (1973) and Lozano & Meyer (1976). Among
other derivations that have been given since are those by Kirby (1986), Miles (1991)
and Chamberlain & Porter (1995). Miles & Chamberlain (1998) also showed that the
mild-slope equation and its modified counterpart, given by Chamberlain & Porter
(1995), arise in a systematically derived sequence of approximations to scattering
over an uneven bed. Athanassoulis & Belibassakis (1999) have recently given a
comprehensive survey of surface wave scattering by topography in two dimensions
that includes multi-mode extensions of the mild-slope equation. Such extensions are
not the immediate concern of the present investigation but they may benefit from a
similar analysis to that carried out here.

To set the mild-slope equations in context, let x and y denote Cartesian coordinates
lying in the undisturbed free surface z = 0 and let the bed be situated at z = −h(x, y).
The continuous function h(x, y) is assumed to satisfy the mild-slope approximation

|∇h/kh| = O(ε) (ε � 1), (1.1)
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for all x, y, the local wavenumber k = k(h(x, y)) being the positive root of the
dispersion relation

ν ≡ σ 2/g = k tanh(kh) (1.2)

corresponding to the depth h(x, y). The angular frequency σ is assumed to be given.
The condition (1.1) is satisfied by the bedform

h(x, y) = h1(x, y) + h2(x, y), where h1(x, y) = H (εx, εy), h2(x, y) = ε d(x, y).

(1.3)

Supposing that H and its derivatives are O(1), the slowly varying profile h1(x, y)
induces depth variations O(1) over distances O(1/ε). With d = O(1), the term h2(x, y)
superposes rapid, small-amplitude variations on the slowly varying component.

The mild-slope equation results from approximating the velocity potential for the
motion by

Φ(x, y, z, t) ≈ Re

{
g

iσ
w0(z, h) η(x, y)e−iσ t

}
, w0(z, h) = sech(kh)cosh k(z + h), (1.4)

with k(h) determined by (1.2), the scaling having been arranged so that the free-surface
elevation is approximated by Re

{
η(x, y)e−iσ t

}
, where η is required to be continuous.

The essence of the approximation is therefore that the vertical motion at x, y is taken
to be that of a plane wave propagating on water having the local depth h(x, y).

By implementing vertical averaging and in the process discarding small terms, the
mild-slope equation was presented by Berkhoff (1972, 1976) and others in the form

∇ · u0∇η + k2u0η = 0, (1.5)

where ∇ = (∂/∂x, ∂/∂y) and

u0 = u0(h) = ‖w0‖2 = {2kh + sinh(2kh)}/4k cosh2(kh). (1.6)

The notation

(u, v) =

∫ 0

−h

u(z, h)v(z, h) dz, ‖u‖2 = (u, u),

is a convenient abbreviation in the following account.
Chamberlain & Porter (1995) formalized the vertical averaging procedure by

invoking a variational principle and, using the same approximation (1.4) for the
velocity potential, derived the modified mild-slope equation

∇ · u0∇η + {k2u0 + u1∇2h + u2(∇h)2}η = 0, (1.7)

in which

u1(h) = (w0, ẇ0), u2(h) = u̇1(h) − ‖ẇ0‖2, (1.8)

the dot denoting differentiation with respect to h.
Equation (1.7) may be regarded as the ‘complete’ mild-slope equation, as it is

derived solely on the basis of (1.4) without further approximation, allowing the effects
of the terms with coefficients u1 and u2, implicitly discarded in earlier derivations, to
be assessed. These terms are O(ε2) for the slowly varying bed profile h = h1, but ∇2h2

is O(ε), which is comparable in magnitude with that of the term ∇u0 = u̇0∇h in (1.5).
This fact explains the failure of the mild-slope equation to give an accurate value of
Bragg resonance in ripple bed scattering, as observed by Kirby (1986) who amended
the equation by including a rapidly varying small-amplitude term.
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However, numerical results have shown that discrepancies between the solutions of
(1.5) and (1.7) which are disproportionate to the magnitude of the additional terms in
the latter are not confined to the special case of ripple beds. There is a further source
of error that is attributable to the ∇2h term in (1.7), which implies discontinuities in
∇η. This follows by direct integration of the equation to give

u0[n · ∇η] + u1η [n · ∇h] = 0, (1.9)

where [ ] denotes the jump in the included quantity across a line of discontinuity
of ∇h and n is a unit normal to that line. A slope discontinuity in the free-surface
profile induced by a slope discontinuity in the topography is therefore inherent in the
approximation, but it does not arise from (1.5) which implies that ∇η is continuous
everywhere. Numerical experiments (see, for example, Porter & Staziker 1995) suggest
that the failure of (1.5) to model such discontinuities may be significant.

The purpose of this paper is to re-examine equations (1.5) and (1.7) and resolve
the discrepancies between their solutions. This is achieved in the next section by
transforming (1.7) in such a way that a reduced form of it, a new version of the mild-
slope equation, contains all of the essential characteristics of the full modified mild-
slope equation. A comparison of the existing and alternative forms of the mild-slope
equation is carried out in § 3 for the most straightforward application, to two-
dimensional scattering, using an analytic solution method which may be applied for
any depth function.

2. Alternative forms of the mild-slope equations
We transform (1.7) by setting

η(x, y) = s(h)ζ (x, y), (2.1)

where the scaling s(h(x, y)) is to be determined. Since

∇ · u0∇(sζ ) = u0s∇2ζ + {(u0s )̇ + u0ṡ}∇h · ∇ζ + {u0ṡ∇2h + (u0ṡ )̇ (∇h)2}η,

(1.7) implies that

u0s∇2ζ + {(u0s )̇ + u0ṡ}∇h · ∇ζ + {k2u0s + ũ1∇2h + ũ2(∇h)2}ζ = 0, (2.2)

where

ũ1 = u1s + u0ṡ, ũ2 = u2s + (u0ṡ )̇ .

Selecting s so that (u0s )̇ + u0ṡ = 0 gives the standard canonical form of the modified
mild-slope equation. Here we make the different choice ũ1 = 0 to remove the term
∇2h, which we have noted to be a source of discrepancies between the solutions of
(1.5) and (1.7).

The dispersion relation implies that k̇ = −2k2{2kh + sinh(2kh)}−1 from which the
identity

2u1 = u̇0 + 2u0k̇/k (2.3)

may readily be verified. This relationship allows ũ1 = 0 to be integrated at once to
give u

1/2
0 ks = constant and we take

s(h) = 1/k(h){u0(h)}1/2.

Moreover, ũ1 = 0 used with (1.6) and (1.8) implies that

ũ2 = {u̇1 − ‖ẇ0‖2}s − (u1s )̇ = −s{‖ẇ0‖2 − (w0, ẇ0)
2/‖w0‖2}
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and with (2.3) it shows that

(u0s )̇ + u0ṡ = −2u0sk̇/k.

The result of using these various expressions in (2.2) is the self-adjoint equation

∇ · k−2∇ζ + {1 − v (∇h)2}ζ = 0, (2.4)

where the dimensionless coefficient v is given by

v(h) = {‖w0‖2‖ẇ0‖2 − (w0, ẇ0)
2}/k2‖w0‖4. (2.5)

The spatial component of the free-surface elevation is determined from the solution
ζ of (2.4) through the transformation (2.1), which may be expressed explicitly as

η(x, y) =
2 cosh(kh) ζ (x, y)

(k(2kh + sinh(2kh))1/2
. (2.6)

The function v(h) has to be evaluated for practical purposes, of course. We note
that it is defined by an expression that is invariant under a scaling of w0 by an
arbitrary function of h; that is, v(h) is unchanged if w0 is replaced by c(h)w0 with
ċ �= 0. Therefore the evaluation can be made by using just w0(z, h) = cosh k(z + h),
leading to

v(h) = {3(2K + sinh K)(sinh(2K) − sinhK) − 3K2(cosh(2K) + 2)

− 4K3 sinhK − K4}/3(K + sinhK)4,

where K = 2kh, an expression which belies the simple form of (2.5).
The transformed version (2.4) of the modified mild-slope equation has a number of

advantages over the original form (1.7). Its relatively simple structure allows properties
of the solution to be deduced more easily; the conclusions drawn by Chamberlain
& Porter (1996), for example, can be simplified and extended by using (2.4). The
removal of the term involving ∇2h both eliminates an O(ε) term and means that ∇ζ is
continuous everywhere, a practical asset when analysing the equation and computing
its solutions; the discontinuity in ∇η remains, of course, and arises through (2.6).
Further, the O(ε2) term in (2.4) is sign definite since the Cauchy–Schwarz inequality
applied to (2.5) shows that v(h) � 0. This is significant when deducing qualitative
differences produced by the higher-order term.

We also note that (2.4) is a direct extension to general kh of the shallow-water
equation ∇ · h∇ζ + νζ = 0, which may be written as

∇ · k−2∇ζ + ζ = 0, (2.7)

on using the shallow-water version ν = k2h of (1.2). Since η → ζ/ν1/2 and v(h) =
O((kh)2) → 0 as kh → 0, (2.7) is indeed the shallow-water limit of (2.4).

More significantly, we may regard the truncated form (2.7) of (2.4) as a ‘consistent’
version of the mild-slope equation for any value of kh in that it is correct to O(ε2),
as was envisaged but incorrectly implemented in the original derivations. Moreover,
(2.7) is actually simpler than the standard mild-slope equation (1.5) and it leads to
approximations of the free-surface profile that satisfy the jump condition (1.9) implicit
in the mild-slope approximation, by virtue of (2.6).

The modified mild-slope equation will clearly produce the most accurate solutions
and the transformed version (2.4) simplifies its use. The main interest therefore centres
on the relative merits of the usual mild-slope equation (1.5) and its new alternative
form (2.7).
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The ratio u0k
2 of the corresponding coefficients in (1.5) and (2.7) is a decreasing

function of kh and satisfies

ν/2 < u0k
2 = s−2 � ν,

the upper limit being attained in the shallow-water case. To determine how this
variation affects the solutions of the respective equations, we examine a specific
problem in which the differences can be analysed.

3. Two-dimensional scattering
We disregard the coordinate y and consider the equation

(pχ ′)′ + pk2(1 − q)χ = 0, (3.1)

holding for −∞ < x < ∞, which can be aligned with the one-dimensional forms of
(1.5), (2.4) and (2.7) by appropriate choices of χ , p and q . As already noted, it is
consistent with those equations to seek solutions for χ that are continuous and have
continuous derivatives for all x.

The bed is assumed to be continuous and horizontal outside the interval (0, 	), with

h(x) =

{
h0 (x � 0)

h1 (x � 	),

where h0 and h1 are constants. Taking into account the time dependence in (1.4) and
supposing that a wave of unit amplitude is incident from the left, we set

χ(x) =

{
eik0x + Re−ik0x (x � 0)

T eik1(x−	) (x � 	),
(3.2)

where k0 = k(h0) and k1 = k(h1).
Because of the required continuity, boundary conditions for (3.1) on (0, 	) follow

from (3.2) as

χ ′(0) + ik0χ(0) = 2ik0, χ ′(	) − ik1χ(	) = 0, (3.3)

and the equations

χ ′(0) − ik0χ(0) = −2ik0R, χ ′(	) + ik1χ(	) = 2ik1T (3.4)

recover the complex amplitudes R and T of the reflected and transmitted waves,
which may be regarded as the principal unknowns of the problem.

Numerical solutions of (3.1) and (3.3) may readily be obtained for any given depth
function h(x) in (0, 	). However, an analytic solution is developed here as the objective
is to identify the differences between the approximations resulting from the various
forms of the mild-slope equations for a general bedform h(x).

3.1. An analytic solution

An integral equation method is used to solve the boundary value problem consisting
of (3.1) and (3.3). This approach avoids complications arising from the finite jumps
that may occur in the term h′2 when the application to (2.4) is considered.

To simplify the integration step, we first cast (3.1) in a different form by introducing
the continuous functions φ1(x) and φ2(x) where

χ ′ + ikχ = 2ikφ1, χ ′ − ikχ = −2ikφ2 (0 � x � 	),
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in which k = k(h(x)). Since χ = φ1 + φ2 and χ ′ = ik(φ1 − φ2), we must have

φ′
1 + φ′

2 = ik(φ1 − φ2)

and (3.1) implies that

pk(φ′
1 − φ′

2) = −(pk)′(φ1 − φ2) + ik(1 − q)(φ1 + φ2).

Solving for φ′
1 and φ′

2 and using an integrating factor reduces these two equations to
the forms

(φ1(x)/α(x))′ = −b(x)φ2(x)/α(x), (φ2(x)/α(x))′ = −b(x)φ1(x)/α(x) (0< x < 	),

(3.5)

in which

α(x) = exp

(∫ x

0

a(s) ds

)
, a = ik − 1

2

(
(pk)′

pk
+ ikq

)
, b = a − ik. (3.6)

Further, (3.3) and (3.4) imply that

φ1(0) = 1, φ2(	) = 0, φ1(	) = T , φ2(0) = R, (3.7)

the first two elements serving as boundary conditions for (3.5).
Now if (ψ1, ψ2)

T is a solution of the coupled system (3.5) so is (ψ2, ψ1)
T and this

pair is linearly independent provided that |ψ1(0)| �= |ψ2(0)| since its Wronskian is
equal to

|ψ1(x)|2 − |ψ2(x)|2 = (|ψ1(0)|2 − |ψ2(0)|2)|α(x)|2.
We choose

ψ1(0) = 0, ψ2(0) = 1 (3.8)

(so that ψ2(x) is non-vanishing) and the solution of (3.5) may therefore be written as
(φ1, φ2)

T = c1(ψ1, ψ2)
T + c2(ψ2, ψ1)

T for some constants c1 and c2. Applying (3.7) we
readily find that

R = −ψ1(	)/ψ2(	), T = |α(	)|2/ψ2(	). (3.9)

It remains to determine ψ1 and ψ2. Integration of (3.5) applied to these functions
is immediate and using (3.8) it gives

ψ1(x) = −
∫ x

0

α(x)b(s)

α(s)
ψ2(s) ds, ψ2(x) = α(x) −

∫ x

0

α(x)b(s)

α(s)
ψ1(s) ds (0 � x � 	).

To solve this pair of coupled integral equations efficiently, it is convenient to define
operators U and V on L2(0, 	) by

(Uψ)(x) = ψ(x), (Vψ)(x) =

∫ x

0

v(x, t)ψ(t) dt,

v(x, t) = α(x)b(t)/α(t) (0 � x, t � 	),

in terms of which we have

ψ1 = −UVUψ2, ψ2 = Uα − Vψ1. (3.10)

Eliminating ψ1,

ψ2 = Uα + (VU)2ψ2
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and since (VU)2 is a linear operator (whereas VU is not), the unique solution is given
by the Neumann series

ψ2 =

∞∑
n=0

(VU)2nUα,

from which

ψ1 = −U

∞∑
n=0

(VU)2n+1Uα

follows at once by (3.10). Reference to Porter & Stirling (1990) shows that it is
sufficient that v(x, t) be a bounded function on [0, 	] × [0, 	] for the corresponding
series of functions to converge uniformly for x ∈ [0, 	]. This is certainly the case
in the present application, in which h′2 is bounded and all of the other functions
involved are continuous.

To translate the solutions for ψ1 and ψ2 into practical forms we note that successive
applications of the operator VU easily lead to the formula

(VU)2nUα = α βn (n = 0, 1, . . .),

where the sequence {βn} is determined by the recurrence relation

β0(x) = 1, βn(x) =

∫ x

0

g(t)βn−1(t) dt (n ∈ IN), g(t) = α(t)b(t)/α(t). (3.11)

Returning to (3.9), therefore, we find explicit expressions for the scattering coefficients
R and T in the forms

T = α(	)

/ ∞∑
n=0

β2n(	), R =

∞∑
n=0

β2n+1(	)

/ ∞∑
n=0

β2n(	). (3.12)

Since it can be shown by using (3.11) that∣∣∣∣∣
∞∑

n=0

β2n(x)

∣∣∣∣∣
2

= 1 +

∣∣∣∣∣
∞∑

n=0

β2n+1(x)

∣∣∣∣∣
2

,

the real reflected wave amplitude can be written as

|R|2 =

∣∣∣∣∣
∞∑

n=0

β2n+1(	)

∣∣∣∣∣
2/(

1 +

∣∣∣∣∣
∞∑

n=0

β2n+1(	)

∣∣∣∣∣
2)

. (3.13)

3.2. The mild-slope equations

We may now return to the main objective and use these results to compare the two
versions (1.5) and (2.7) of the mild-slope equation in the context of two-dimensional
scattering.

Comparing (1.5) with (3.1) we have p = u0, q = 0 and χ ≡ η. The alignment of
(2.7) with (3.1) requires p = k−2, q = 0 and χ ≡ ζ = η/s(h) but to preserve the form
(3.2) we introduce a constant multiplier and set η = s(h) ζ/s(h0). It follows that the
time-independent part of the free-surface profile is such that

η(x) =

{
eik0x + Re−ik0x (x � 0)

T̃ eik1(x−	) (x � 	),
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where T̃ = T for (3.1) and T̃ = s(h1)T/s(h0) for (2.7), R and T being determined by
(3.12) applied to the relevant equation. In particular, the multiplier α(	) occurring in

the expression for T reconciles the different scalings in T̃ .
We shall use the superscript 1 to refer to (1.5) and the superscript 2 to refer to

(2.7). Thus, for example, on evaluating the generating functions (3.11) for the two
equations by using the appropriate functions p and q and referring to (3.6) we find
that

g(i)(x) = −k(h(x))h′(x)f (i)(K(x))exp

(
2i

∫ x

0

k(h(s)) ds

)
(0 � x � 	), (3.14)

where K = 2kh, as before, and

f (1)(K) = (2 sinhK − K coshK + K)/(K + sinhK)2, f (2)(K) = 1/(K + sinhK).

Because of the multiplier h′ in g(i), the sequences generated by using (3.14) in (3.11)
are such that β (i)

n = O(εn) for the general bedform (1.3). Few terms are therefore
needed in (3.13) to obtain good estimates of the reflected wave amplitudes |R(i)| and
for our present purpose we can restrict attention to the terms

β
(i)
1 (	) =

∫ 	

0

g(i)(x) dx = −
∫ 	

0

k(h(x))h′(x)f (i)(K(x))exp

(
2i

∫ x

0

k(h(s)) ds

)
dx. (3.15)

The modified mild-slope equation in the form (2.4), which corresponds to taking
p = k−2 and q = vh′2 in (3.1), leads to an O(ε) correction in f (2)(K) which does not
contribute to the dominant term in β

(2)
1 (	). This confirms that the amplitude |R(2)|

given by (2.7) is equal at leading order to the reflected wave amplitude determined by
the modified mild-slope equation, the key feature of the revised mild-slope equation.

It is evident that the functions f (1) and f (2) will generally give rise to different
values |R(1)| and |R(2)| at leading order for every topography and not just those depth
functions h(x) that bring into play the deficiencies in the standard mild-slope equation
identified in the introduction. Previous computations for a limited number of bedforms
have shown discrepancies between the scattered wave amplitudes determined by (1.5)
and (1.7) and it is now clear that they are not untypical.

To assess the effects of f (1) and f (2), we first note that f (2)(K) > 0 is a decreasing
function whereas, as K increases, f (1)(K) changes sign from positive to negative at
K = K0 ≈ 2.40, where (K/2) tanh(K/2) = 1 (that is, where kh tanh(kh) = 1) and has
a minimum in K > K0. It is easily checked that

F (K) = f (1)(K)/f (2)(K) = 1 − (K coshK − sinhK)/(K + sinhK) < 1

for K > 0, with F (0) = 1. Indeed, F (K) is a decreasing function, with F (K) → −∞ as
K → ∞. Clearly, F (K0) = 0 and a straightforward calculation shows that F (K1) =
−1, where K1 ≈ 3.44. Therefore, 0 � |F (K)| � 1 for 0 � K � K1, the upper bound
being attained at both K = 0 (the shallow-water limit) and K = K1, and the lower
bound at K = K0. For K > K1, |F (K)| > 1.

To give concrete illustrations of the consequences of these observations, we consider
the two components of the general topography (1.3) separately.

3.3. Small-amplitude perturbations

Suppose that h1 = h0 and h(x) = h0(1 + εδ(x)) for 0 � x � 	, representing small-
amplitude perturbations about an otherwise horizontal bed. It follows from (3.14)
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and (3.15) that

β
(i)
1 (	) = εQ(i) + O(ε2), Q(i) = − 1

2
εK0f

(i)(K0)

∫ 	

0

δ′(x)e2ik0x dx,

where K0 = 2k0h0. Therefore (3.13) gives∣∣R(i)
∣∣2 =

ε2
∣∣Q(i)

∣∣2 + O(ε3)

1 + ε2
∣∣Q(i)

∣∣2 + O(ε3)
(3.16)

and ∣∣R(1)
∣∣/∣∣R(2)

∣∣ =
∣∣Q(1)

∣∣/∣∣Q(2)
∣∣ + O(ε) = |F (K0)| + O(ε). (3.17)

Thus, at leading order, this ratio of the reflected wave amplitudes can take any
non-negative value, including zero at K0 = K0 and unity at K0 = K1, depending
on the value of K0, which is determined from (1.2) by the dimensionless depth νh0.
The standard mild-slope equation (1.5) therefore underestimates the reflected wave
amplitude for 0 < K < K1, and overestimates it for K > K1. Although reflection
is insignificant for large values of K , kh = K0/2 and kh = K1/2 are in the O(1)
dimensionless wavenumber range for which the mild-slope equation was devised.

In the particular case of a so-called ripple bed with δ(x) = −sin(κx), we readily find
that ∣∣Q(i)

∣∣ = K0f
(i)(K0)γ sin(Nπγ )/(γ 2 − 1),

where γ = 2k0/κ and N = κ	/2π is the number of ripples. A more detailed examination
shows that the correction terms in (3.16) are O(ε4) for this topography. The
phenomenon of Bragg resonance is evident in the limit |Q(i)| → K0|f (i)(K0)|Nπ/2
as γ → 1. Using the data of Davies & Heathershaw (1984), with ε = 0.16 and N = 10
we find that K0 = 1.96. At Bragg resonance (3.16) gives |R(1)| = 0.28 and |R(2)| = 0.67,
values which compare surprisingly well with those obtained by direct computations
(given in figure 1), since |Q(i)| ∼ N is an extreme case for the present approach. The
deduction of (3.17) from (3.16) is compromised by the presence of N , however, as
|R(1)|/|R(2)| = 0.43 is given by the former equation and |F (K0)| = 0.33.

3.4. Slowly varying topography

In this case we let h(x) = H (εx) in (3.15) and, integrating by parts, we find that

β
(i)
1 (	) =

i

2

{
f (i)(K1)h

′(	−)eiθ − f (i)(K0)h
′(0+)

}
+ O(ε2), θ = 2

∫ 	

0

k(h(s)) ds,

where K0 = 2k0h0, as before, and K1 = 2k1h1. Approximations to the reflected wave
amplitude follow from (3.13) in the form (3.16), but now with

ε2
∣∣Q(i)

∣∣2 = P
(i)2
0 + P

(i)2
1 − 2P

(i)
0 P

(i)
1 cos θ, (3.18)

where P
(i)
0 = f (i)(K0)h

′(0+)/2 and P
(i)
1 = f (i)(K1)h

′(	−)/2. If the bed slope is
continuous at x = 0 and therefore h′(0+) = 0, a second integration by parts gives
P

(i)
0 = f (i)(K0)h

′′(0+)/4k0. Similarly, h′(	−) = 0 gives P
(i)
1 = f (i)(K1)h

′′(	−)/4k1 and if
h′(0+) = h′(	−) = 0 the correction terms in (3.16) have to be reset to O(ε5).

Although it is clear that (3.18) will give values of |R(1)| and |R(2)| that are distinct for
most h(x) and most values of ν	, K0 and K1, because of the derived properties of f (K),
the relationship between the two amplitudes is obscure for this bedform because of
the multiplicity of parameters involved. Some special cases can be identified, however.
If h′(	−) = 0 and h′(0+) �= 0, (3.17) applies and if h′(0+) = 0 with h′(	−) �= 0 it
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Figure 1. Comparison of the reflection coefficients for the periodic bedform described in the
text. |R| corresponds to the modified mild-slope equation, |R(1)| to the standard mild-slope
equation and |R(2)| to the revised mild-slope equation.

applies again but with K1 replacing K0. Also, one of the terms |Q(i)| may vanish and
then the two reflected amplitudes are of different orders. For example, if θ = 0 and
h′(0+)f (1)(K0) = h′(	−)f (1)(K1) then |Q(1)| = 0 and |R(1)| = O(ε2). Unless K0 = K1

then F (K0) �= F (K1) which implies that f (1)(K1)f
(2)(K0) �= f (2)(K1)f

(1)(K0), whence
|Q(2)| �= 0 and |R(2)| = O(ε).

A more general inspection of |R(1)/R(2)| using the properties of f (1), f (2) and F

shows that the dominant term in this quotient can take any non-negative value,
confirming that (1.5) and (2.7) give scattered wave amplitudes that differ at O(ε) for
any bedform, except at isolated parameter values.

3.5. Numerical results

The preceding analysis is confirmed by numerical results representing each of the two
classes of bedforms considered above. The topographies selected for this purpose are
those that have been widely used to validate approximate models of two-dimensional
scattering.

Scattering by small perturbations in the topography is illustrated by the periodic
bed referred to earlier, for which h(x) = h0(1 − ε sin(κx)) (0 � x � 	) with ε = 0.16
and N = 10. As comparison with the experimental data produced by Davies &
Heathershaw (1984) has been carried out previously for the mild-slope and modified
mild-slope equations (in Chamberlain & Porter 1995, for example), it is not duplicated
here and the computational results presented in figure 1 are confined to the present
investigation. The three versions |R|, |R(1)| and |R(2)| of the magnitude of the reflected
wave amplitude that are plotted correspond respectively to the modified mild-slope
equation (1.7) or (2.4), the original mild-slope equation (1.5) and the new mild-slope
equation (2.7); the abscissa is 2k0/κ , where k0 is the incident wavenumber.

Graphs of the same quantities are shown in figure 2 in the case of the slowly varying
topography consisting of a linear ramp joining the depths h0 and h1 = h0/3 and given
by h(x) = h0(1 − 2x/3	) (0 � x � 	). The parameter in this case is the dimensionless
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Figure 2. Comparison of the reflection coefficients for the ramp bedform described in the
text. |R| corresponds to the modified mild-slope equation, |R(1)| to the standard mild-slope
equation and |R(2)| to the revised mild-slope equation.

ramp length ν	. Porter & Staziker (1995) compared the scattering characteristics
predicted by the mild-slope and modified mild-slope equations for this bedform with
those obtained using full linear theory by Booij (1983).

Both figures confirm that |R(1)| and |R(2)| differ except at isolated parameter values,
as we have established analytically for a general topography. Moreover, the curves
representing |R| and |R(2)| are almost indistinguishable at the resolution in the figures,
except near k0 = κ in figure 1. Similar discrepancies have previously been noted at
this location, evidently because the approximations are unable to resolve the weak
secondary resonance there.

The near coincidence of |R| and |R(2)| in these examples suggests that the coefficient
v(h) of the second-order correction term in (2.4) should be investigated more closely. It
is not difficult show and confirm computationally that this coefficient has a maximum
value of v(h) ≈ 0.030 at K ≈ 3.254 (corresponding to νh ≈ 1.506). Therefore the new
mild-slope equation gives virtually the same values of the reflected wave amplitude
as the full modified version, for every topography.

4. Conclusions
A new form of the mild-slope equation has been derived which gives the leading

term in the solution of the more accurate modified mild-slope equation. This corrects
an inconsistency in the original mild-slope equation which produces solutions differing
at lowest order in the mild-slope parameter from those of the full equation. Two types
of bedform can be readily identified as giving rise to this discrepancy: those having
a rapidly varying small-amplitude component and those having slope discontinuities.
However, an analytic solution developed for two-dimensional wave scattering has
shown that a discrepancy actually occurs for every topography.

In the process of devising the new mild-slope equation, an alternative simpler
representation of the modified mild-slope equation has been identified that has
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several advantages over the existing form. Further, the correction term in new version
of the modified equation, which is second order in the bed slope and also has a
small coefficient, has virtually no effect on the scattered wave amplitude. The new
mild-slope equation is therefore not only simpler than its predecessor but is almost
as accurate as the modified mild-slope equation, which is effectively redundant.

Extensions of the mild-slope equation may benefit from a corresponding analysis
to that carried out here. Massel (1993) and Porter & Staziker (1995) enhanced the
approximation (1.4) so as to include N terms deriving from evanescent wave modes.
Subsequently, Athanassoulis & Belibassakis (1999) showed that this approach is
defective in the sense that the exact solution cannot be attained in the limit N → ∞.
A related issue is that the average wave power is not conserved across varying
topography in the two earlier models. Athanassoulis & Belibassakis (1999) remedied
these defects by the addition of a further mode to those used by the previous authors.
Inevitably, the convergence of an approximation derived from a variational principle
is improved by the use of a trial space having more of the properties of the exact
solution, and this is the practical benefit of the improvement given by Athanassoulis
& Belibassakis (1999).

Although the inclusion of higher-order modes in the approximation process leads to
additional accuracy, the resulting system of coupled differential equations is unwieldy
and has to be solved subject to a set of coupled jump conditions holding across
discontinuities in the bed slope. It is possible that the basic idea used in the present
work can be carried over to the multi-mode cases, transforming the coupled equations
into a more concise form which can be simplified without discarding any essential
features and removing the jump discontinuities from the numerical solution procedure.

The author is indebted to Dr Peter Chamberlain of the Mathematics Department,
University of Reading, for producing the figures.
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